DEFN A **binary operation** \(* \) on a set \(G \) is a rule that for each \(a \in G, b \in G \) assigns \(c = a * b \), such that \(c \in G \).

DEFN A **group** consists of a set \(G \) and a binary operation \(* \) with the following properties:

1. **Associativity** \((a * b) * c = a * (b * c) \) for \(a, b, c \in G \)
2. **Existence of Identity** There exists \(e \in G \) such that \(a * e = e * a = a \), for all \(a \in G \)
3. **Existence of Unique Inverses** For each \(a \in G \), there exists a unique element \(a^{-1} \in G \) such that \(a * a^{-1} = a^{-1} * a = e \)

DEFN A group is said to be **commutative** or **abelian** if it also satisfies:

4. **Commutativity**: For all \(a, b \in G \), \(a * b = b * a \)

- If a group is commutative, then the group operation is often represented as “+”
- Examples of groups:
 - The **set of integers** forms a commutative group under **addition**.
 - The **set of integers** does **not** form a group under **multiplication**. Why?
 - The **set of rational numbers excluding zero** forms a group under **multiplication**.
 - The **set of \((n \times n)\) matrices with real elements** forms a commutative group under matrix addition.

DEFN The **order**, or **cardinality** of a group is the number of elements in the group.

DEFN If the order or a group is finite, the group is a **finite group**. Otherwise, it is an **infinite group**.

- The previous examples are **infinite groups**.
• For the construction of error-control codes, we are primarily concerned with finite groups.
• Construction of finite groups using modulo arithmetic on the integers:
 – The result of **addition modulo** \(m \) of \(a, b \in G \) is the remainder, \(c \), of \(a + b \) divided by \(m \), where \(0 \leq c \leq m - 1 \):
 \[
 a + b = k \cdot m + c,
 \]
 where \(k \) is the largest integer such that
 \(k \cdot m < (a + b) \)
 – Modulo addition can be expressed in several ways. We will start with a more-descriptive form than in the text:
 \[
 a + b \equiv c \mod m
 \]
 – Examples - on board

Construction of Groups Using Modulo Addition

– Define \(G \) by \(G = \{0, 1, 2, \ldots, m - 1\} \)
– Define \(c = a \oplus b \) by \(a + b \equiv c \mod m \)
– Then \((G, \oplus) \) is a group:
 * \(a \oplus b \) is an integer between 0 and \(m - 1 \), so \(G \) is **closed under** \(\oplus \)
 * \(\oplus \) is **associative** – see textbook
 * The identity element under \(\oplus \) is zero
 \[
 a \oplus 0 = a,
 a \oplus b = a \Rightarrow b = k \cdot m,
 \]
 but \(b = k \cdot m \Rightarrow b = 0 \)
 (The identity is unique)
 * For an element \(a \) in \(G \), \(m - a \) is also in \(G \).
 Let \(c = a \oplus m - a \). Then
 \[
 a + m - a \equiv c \mod m
 \]
 \[
 m \equiv c \mod m
 \]
 \[
 \Rightarrow m = k \cdot m + c
 \]
 \[
 \Rightarrow c = 0
 \]
 (Inverses are in \(G \).
 * This defines an **additive group** over the integers mod \(m \).
 * Example – on board
• **Construction of Groups Using Modulo Multiplication**

 - Suppose we select a prime number \(p \), and let \(G = \{ 1, 2, \ldots, p - 1 \} \).
 - Define \(\Box \) by \(c = a \Box b \) if \(a \cdot b \equiv c \mod p \).
 - **Claim**: \((G, \Box)\) is a group of order \(p - 1 \)
 * **Associativity**: see proof on board
 * **Identity**: clearly \(a \Box 1 = a \)
 * **Inverses**:
 Let \(i \in G \) be an element for which we want to find an inverse
 By Euclid’s Theorem, \(\exists \ a, b \) such that
 \[a \cdot i + b \cdot p = 1 \]
 if \(a, p \) are relatively prime (guaranteed since \(p \) is prime and \(a < p \)).
 Then
 \[a \cdot i = -b \cdot p + 1 \]
 \[\Rightarrow a \cdot i \equiv 1 \mod p \]
 If \(a \in G \), then \(i^{-1} = a \).
 If \(a \notin G \), divide \(a \) by \(p \),
 \[a = q \cdot p + r, \ \text{where} \ r \in G \]
 Then
 \[(q \cdot p + r) i = -b \cdot p + 1 \]
 \[r \cdot i = -(qi + b) \cdot p + 1, \]
 so \(r \in G \) and \(r \cdot i \equiv 1 \mod p \), \(\Rightarrow i^{-1} = r \).

• **Properties of Groups**

 - **Theorem 2.1** The identity element is unique.
 (Proof omitted)
 - **Theorem 2.2** The inverse of a group is unique.
 Suppose \(a \in G \) has 2 inverses \(a' \) and \(a'' \)
 Then
 \[a' = a' \ast e \]
 \[= a' \ast (a \ast a'') \]
 \[= (a' \ast a) \ast a'' \]
 \[= e \ast a'' = a'' \]

 Thus, \(a' = a'' \), and the inverse is unique.
Subgroups: If H is a nonempty subset of G and H is closed under $*$ and satisfies all the conditions of a group, then H is a *subgroup* of G.

Rings

DEFN A *ring* is a collection of elements R with two binary operations, usually denoted “$+$” and “\cdot” with the following properties;

1. $(R, +)$ is a commutative group. The additive identity is labeled “0”.
2. \cdot is Associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
3. \cdot Distributes over $+$.
 \[a \cdot (b + c) = (a \cdot b) + (a \cdot c). \]

DEFN A ring is a *commutative ring* if \cdot is commutative: $a \cdot b = b \cdot a$

DEFN A ring is a *ring with identity* if \cdot has an identity, which is labeled “1”.