Construction of Standard Array to Minimize Error Prob.

Recall: Choice of coset leaders determines the error patterns that can be corrected
→ Should choose coset leaders to be error patterns that are most likely to occur
⇒ At each step in construction of standard array, choose vector of least weight from remaining vectors

Claim: The standard array constructed in this way is a maximum-likelihood decoder.

Check: Transmit \mathbf{v}_c
Receive $\mathbf{r} = \mathbf{v}_c + \mathbf{e}_l$
where \mathbf{e}_l is a coset leader

Fact: The way we construct the standard array for minimum error prob. ensures that each coset leader has the minimum weight in its coset.
Determine \(d(\xi, \nu_j), 1 \leq j \leq 2^k \)

2 cases:
1) If \(j = \iota \), \(d(\xi, \nu_\iota) = d(\nu_\iota + \epsilon_\iota, \nu_\iota) = \omega(\epsilon_\iota) \)
2) If \(j \neq \iota \), \(d(\xi, \nu_j) = \omega(\nu_\iota + \nu_j + \epsilon_\iota) \)
 \[
 = \omega(\nu_\iota + \epsilon_\iota)
 \]
 where \(\nu_\iota = \nu_\iota + \nu_j \) is a codeword in \(C \).
 Then \(\nu_\iota + \epsilon_\iota \) is in the coset of \(\epsilon_\iota \).

By \(\Theta \), \(d(\xi, \nu_\iota) \leq d(\xi, \nu_j) \)

\(\Rightarrow \) The standard array decoder chooses the closest code vector — the maximum-likelihood decision.

Calculation of Error Prob. for Standard Array Decoder

Let \(\alpha_i = \# \) of coset leaders of weight \(i \), \(0 \leq i \leq n \)

\[
P(\text{Error}) = P(\text{Error pattern is not a coset leader})
= 1 - P(\text{Error pattern is a coset leader})
= 1 - \sum_{i=0}^{n} \alpha_i p^i (1-p)^{n-i}
\]

Examples: on board

Thm 3.5 For any \((n,k)\) linear code \(C \) with min. distance \(d_{\text{min}} \), all \(n \)-tuples of wt. \(t = \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor \) or less can be used as coset leaders. If all \(n \)-tuples of wt \(\leq t \) are used as coset leaders, then there is at least
one n-tuple of wt. \((t+1)\) that cannot be used as a coset leader.

(In other words, a linear code with min. distance \(d_{\text{min}}\) is capable of correcting all error patterns of weight \(t = \left\lfloor \frac{d_{\text{min}} - 1}{2} \right\rfloor\) or less, but it cannot correct all error patterns of weight \(> t\).)

Proof: First show that no 2 n-tuples of wt. \(\leq t\) can be in the same coset, so all n-tuples of wt. \(\leq t\) can be used as coset leaders:

Given 2 n-tuples \(x, y\) \(\Rightarrow\) \(w(x) \leq t\) \(\wedge\) \(w(y) \leq t\)

\[d(x, y) = w(x + y) \leq 2t < d_{\text{min}}\]

\(\Rightarrow\) If \(x, y\) in same coset, then \(x + y\) is a codeword \(\Rightarrow\) \(w(x) < d_{\text{min}}\)

\(\#\) (Contradiction)
(2) Next, we show there is some n-tuple of weight t+1 that cannot be used as a coset leader:

Let \(y \in C \) s.t. \(\omega(y) = d_{\text{min}} \)

Let \(x, y \) be 2 n-tuples such that:

(i) \(x + y = v \)

(ii) \(x \) and \(y \) do not have zeros in common places

(iii) \(\omega(y) = t + 1 \)

If \(x \) is in a coset, then \(y = v + x \) is in the coset.

\[\omega(v) = \omega(x) + \omega(y) = d_{\text{min}} \]

Since \(2t + 1 \leq d_{\text{min}} \leq 2t + 2 \), either

\[\omega(x) = t \quad \text{or} \quad \omega(x) = t + 1 \]

\[\Rightarrow \] If \(x \) is a coset leader, then \(y \) is one example of an n-tuple of wt. \(t + 1 \) that cannot be a coset leader.
Thm 3.6] All 2^k n-tuples in a coset have the same syndrome, and the syndromes for different cosets are different.

Pf] Consider a coset with coset leader e_ℓ. Any vector in the coset can be written as $e_\ell + u_j$, for some $u_j \in C$

$$\Rightarrow \ \Sigma = (e_\ell + u_j) \cdot H^T = e_\ell \cdot H^T + u_j \cdot H^T$$

$$= e_\ell \cdot H^T$$

All vectors in the coset have the same syndrome.

Now consider 2 different cosets with coset leaders $e_\ell \neq e_j$.

Suppose $\Sigma_\ell = e_\ell \cdot H^T = \Sigma_j = e_j \cdot H^T$

$$\Rightarrow (e_\ell + e_j) \cdot H^T = 0,$$

so $e_\ell + e_j$ must be a codeword, call it u_k.

Then $e_\ell + e_j = u_k \Rightarrow e_\ell = e_j + u_k$.

So e_ℓ is in the coset of e_j. # (contradiction)
Thm 3.6 says that there is a 1-1 correspondence between syndromes and coset leaders.

\[\Rightarrow \text{given } \mathbf{s} = \mathbf{s} \cdot H^T, \text{ choose error pattern to be coset leader that gives } \mathbf{s} \]

\[\Rightarrow \text{only need table of } 2^{n-k} \text{ syndromes and coset leaders} \]

Syndrome Decoding Algorithm:

1. Compute syndrome \(\mathbf{s} = \mathbf{s} \cdot H^T \)
2. Locate coset leader that has \(\mathbf{s} = \mathbf{e}_l \cdot H^T \)
3. Decode received vectors as \(\mathbf{r} = \mathbf{s} + \mathbf{e}_l \)